129 research outputs found

    Lifted Bayesian filtering in multi-entity systems

    Get PDF
    This thesis focuses on Bayesian filtering for systems that consist of multiple, interacting entites (e.g. agents or objects), which can naturally be described by Multiset Rewriting Systems (MRSs). The main insight is that the state space that is underling an MRS exhibits a certain symmetry, which can be exploited to increase inference efficiency. We provide an efficient, lifted filtering algorithm, which is able to achieve a factorial reduction in space and time complexity, compared to conventional, ground filtering.Diese Arbeit betrachtet Bayes'sche Filter in Systemen, die aus mehreren, interagierenden Entitäten (z.B. Agenten oder Objekten) bestehen. Die Systemdynamik solcher Systeme kann auf natürliche Art durch Multiset Rewriting Systems (MRS) spezifiziert werden. Die wesentliche Erkenntnis ist, dass der Zustandraum Symmetrien aufweist, die ausgenutzt werden können, um die Effizienz der Inferenz zu erhöhen. Wir führen einen effizienten, gelifteten Filter-Algorithmus ein, dessen Zeit- und Platzkomplexität gegenüber dem grundierten Algorithmus um einen faktoriellen Faktor reduziert ist

    On the Aggregation of Rules for Knowledge Graph Completion

    Full text link
    Rule learning approaches for knowledge graph completion are efficient, interpretable and competitive to purely neural models. The rule aggregation problem is concerned with finding one plausibility score for a candidate fact which was simultaneously predicted by multiple rules. Although the problem is ubiquitous, as data-driven rule learning can result in noisy and large rulesets, it is underrepresented in the literature and its theoretical foundations have not been studied before in this context. In this work, we demonstrate that existing aggregation approaches can be expressed as marginal inference operations over the predicting rules. In particular, we show that the common Max-aggregation strategy, which scores candidates based on the rule with the highest confidence, has a probabilistic interpretation. Finally, we propose an efficient and overlooked baseline which combines the previous strategies and is competitive to computationally more expensive approaches.Comment: KLR Workshop@ICML202

    Discovering Behavioral Predispositions in Data to Improve Human Activity Recognition

    Full text link
    The automatic, sensor-based assessment of challenging behavior of persons with dementia is an important task to support the selection of interventions. However, predicting behaviors like apathy and agitation is challenging due to the large inter- and intra-patient variability. Goal of this paper is to improve the recognition performance by making use of the observation that patients tend to show specific behaviors at certain times of the day or week. We propose to identify such segments of similar behavior via clustering the distributions of annotations of the time segments. All time segments within a cluster then consist of similar behaviors and thus indicate a behavioral predisposition (BPD). We utilize BPDs by training a classifier for each BPD. Empirically, we demonstrate that when the BPD per time segment is known, activity recognition performance can be substantially improved.Comment: Submitted to iWOAR 2022 - 7th international Workshop on Sensor-Based Activity Recognition and Artificial Intelligenc

    GRANDE: Gradient-Based Decision Tree Ensembles

    Full text link
    Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE\text{GRANDE}, GRA\text{GRA}dieN\text{N}t-Based D\text{D}ecision Tree E\text{E}nsembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRAND

    How healthy are chronically ill patients after eight years of homeopathic treatment? – Results from a long term observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homeopathy is a highly debated but often used medical treatment. With this cohort study we aimed to evaluate health status changes under homeopathic treatment in routine care. Here we extend former results, now presenting data of an 8-year follow-up.</p> <p>Methods</p> <p>In a prospective, multicentre cohort study with 103 homeopathic primary care practices in Germany and Switzerland, data from all patients (age >1 year) consulting the physician for the first time were observed. The main outcome measures were: The patients' perceived change in complaint severity (numeric rating scales from 0 = no complaint to 10 = maximal severity) and quality of life as measured by the SF-36 at baseline, and after 2 and 8 years.</p> <p>Results</p> <p>A total of 3,709 patients were studied, 73% (2,722 adults, 72.8% female, age at baseline 41.0 ± 12.3; 819 children, 48.4% female, age 6.5 ± 4.0) contributed data to the 8-year follow-up. The most frequent diagnoses were allergic rhinitis and headache in adults, and atopic dermatitis and multiple recurrent infections in children. Disease severity decreased significantly (p < 0.001) between baseline, 2 and 8 years (adults from 6.2 ± 1.7 to 2.9 ± 2.2 and 2.7 ± 2.1; children from 6.1 ± 1.8 to 2.1 ± 2.0 and 1.7 ± 1.9). Physical and mental quality of life sores also increased considerably. Younger age, female gender and more severe disease at baseline were factors predictive of better therapeutic success.</p> <p>Conclusion</p> <p>Patients who seek homeopathic treatment are likely to improve considerably. These effects persist for as long as 8 years.</p

    Quantifying Flood Vulnerability Reduction via Private Precaution

    Get PDF
    Private precaution is an important component in contemporary flood risk management and climate adaptation. However, quantitative knowledge about vulnerability reduction via private precautionary measures is scarce and their effects are hardly considered in loss modeling and risk assessments. However, this is a prerequisite to enable temporally dynamic flood damage and risk modeling, and thus the evaluation of risk management and adaptation strategies. To quantify the average reduction in vulnerability of residential buildings via private precaution empirical vulnerability data (n = 948) is used. Households with and without precautionary measures undertaken before the flood event are classified into treatment and nontreatment groups and matched. Postmatching regression is used to quantify the treatment effect. Additionally, we test state-of-the-art flood loss models regarding their capability to capture this difference in vulnerability. The estimated average treatment effect of implementing private precaution is between 11 and 15 thousand EUR per household, confirming the significant effectiveness of private precautionary measures in reducing flood vulnerability. From all tested flood loss models, the expert Bayesian network-based model BN-FLEMOps and the rule-based loss model FLEMOps perform best in capturing the difference in vulnerability due to private precaution. Thus, the use of such loss models is suggested for flood risk assessments to effectively support evaluations and decision making for adaptable flood risk management.European Union http://dx.doi.org/10.13039/100011102Peer Reviewe

    Explanations for neural networks by neural networks

    Get PDF
    Understanding the function learned by a neural network is crucial in many domains, e.g., to detect a model&rsquo;s adaption to concept drift in online learning. Existing global surrogate model approaches generate explanations by maximizing the fidelity between the neural network and a surrogate model on a sample-basis, which can be very time-consuming. Therefore, these approaches are not applicable in scenarios where timely or frequent explanations are required. In this paper, we introduce a real-time approach for generating a symbolic representation of the function learned by a neural network. Our idea is to generate explanations via another neural network (called the Interpretation Network, or I-Net), which maps network parameters to a symbolic representation of the network function. We show that the training of an I-Net for a family of functions can be performed up-front and subsequent generation of an explanation only requires querying the I-Net once, which is computationally very efficient and does not require training data. We empirically evaluate our approach for the case of low-order polynomials as explanations, and show that it achieves competitive results for various data and function complexities. To the best of our knowledge, this is the first approach that attempts to learn mapping from neural networks to symbolic representations
    corecore